Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis

نویسندگان

  • Zenglin Xu
  • Feng Yan
  • Yuan Qi
چکیده

Tensor decomposition is a powerful computational tool for multiway data analysis. Many popular tensor decomposition approaches—such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)—amount to multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g.missing data and binary data), and (iii) noisy observations and outliers. To address these issues, we propose tensorvariate latent nonparametric Bayesian models, coupled with efficient inference methods, for multiway data analysis. We name these models InfTucker . Using these InfTucker models, we conduct Tucker decomposition in an infinite feature space. Unlike classical tensor decomposition models, our new approaches handle both continuous and binary data in a probabilistic framework. Unlike previous Bayesian models on matrices and tensors, our models are based on latent Gaussian or t processes with nonlinear covariance functions. To efficiently learn the InfTucker models from data, we develop a variational inference technique on tensors. Compared with classical implementation, the new technique reduces both time and space complexities by several orders of magnitude. Our experimental results on chemometrics and social network datasets demonstrate that our new models achieved significantly higher prediction accuracy than the most state-of-art tensor decomposition approaches. Appearing in Proceedings of the 29 th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright 2012 by the author(s)/owner(s).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

InfTucker: t-Process based Infinite Tensor Decomposition

Tensor decomposition is a powerful tool for multiway data analysis. Many popular tensor decomposition approaches—such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)—conduct multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g. missing data and binary data), and (iii) noisy observations and outliers. To ad...

متن کامل

DinTucker: Scaling up Gaussian process models on multidimensional arrays with billions of elements

Infinite Tucker Decomposition (InfTucker) and random function prior models, as nonparametric Bayesian models on infinite exchangeable arrays, are more powerful models than widely-used multilinear factorization methods including Tucker and PARAFAC decomposition, (partly) due to their capability of modeling nonlinear relationships between array elements. Despite their great predictive performance...

متن کامل

DinTucker: Scaling Up Gaussian Process Models on Large Multidimensional Arrays

Tensor decomposition methods are effective tools for modelling multidimensional array data (i.e., tensors). Among them, nonparametric Bayesian models, such as Infinite Tucker Decomposition (InfTucker), are more powerful than multilinear factorization approaches, including Tucker and PARAFAC, and usually achieve better predictive performance. However, they are difficult to handle massive data du...

متن کامل

Bayesian Sparse Tucker Models for Dimension Reduction and Tensor Completion

Tucker decomposition is the cornerstone of modern machine learning on tensorial data analysis, which have attracted considerable attention for multiway feature extraction, compressive sensing, and tensor completion. The most challenging problem is related to determination of model complexity (i.e., multilinear rank), especially when noise and missing data are present. In addition, existing meth...

متن کامل

Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work

Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012